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ABSTRACT

In our recentwork we have introduceda framework for ex-
tractingfeaturedrom solid of mechanicahrtifactsin polyhedral
representatiofasedon scale-spacéeaturedecompositior1].
Our approachusedrecentdevelopmentsin ef cient hierarchi-
cal decompositionof metric datausing its spectralproperties.
Through spectraldecompositionwe were able to reducethe
problemof matchingto that of computinga mappingand dis-
tancemeasurdetweernvertex-labeledrootedtrees.

Thiswork discussesow Scale-Spacdecompositiorirame-
work couldbe extendedo extractfeaturesrom CAD modelsin
polyhedralrepresentatiom termsof surfacetriangulation.First,
we give anoverview of the Scale-Spacdecompositiorapproach
thatis usedto extract thesefeatures. Second,we discussthe
performancef thetechniqueusedto extractfeaturedrom CAD
datain polyhedralrepresentation.Third, we shav the feature
extractionprocessn noisy data— CAD modelsthat were con-
structedusinga 3D scanner Finally, we concludewith discus-
sionof futurework.

1 Introduction

Theproblemof 3D objectrecognitionis oftenformulatedas
thatof matchingcon gurationsof features.Suchcon gurations
areoftenrepresentedsvertex-labeledgraphswhosenodesep-
resent3D featuregor their abstractionsandwhoseedgesepre-
sentspatialrelations(or constraintspetweenthe features.The
relationsaretypically geometricor hierarchical but caninclude
othertypesof information. To matchtwo 3D modelsmeansto

establishcorrespondencdsetweertheir constituenfeatures.In

this contet, featues are intrinsic propertiesof the 3D shape
which may encompaséocal geometryand topology relatedto

designor manufcturingoperations.

The problemof featureextractionis very important;hence,
it could be usedfor similarity assessmerig, 3], provided that
an exact representatiotfior the modelsis provided (i.e. Brep).
Unfortunately theseapproachesannot be usedif only approx-
imate representationf.e. polyhedral)areavailable. In [1] we
shavedhow Scale-Spacdecompositiortouldbeusedto extract
featuresfrom 3D modelsin polyhedralrepresentation.

If a featureextraction producesconsistentresultseven if
only partial datais available (local featureextraction), then it
couldbeusedfor partialmatching.Our currentwork shavs how
Scale-Spacdecompositiortanbe extendedo addressheissue
of extractinglocal featuresrom 3D modelsin polyhedralrepre-
sentationIn otherwords,if we aregivenonly a partof anobject
(for instancea single 3D laserscan)we wantto be ableto ex-
tractfeaturesfrom this objectandthen nd completeobjectsin
our databas¢hathave similar features.In this paperwe discuss
suchfeatureextractionprocess.

2 Related Work

Our researchaims to bring information retrieval to CAD
databasesgnablingthemto have indexing and query mecha-
nismslik e thosebeginningto foundin multimediadatabaseand
knowledgemanagemenrgystems.
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2.1 Feature Extraction on Solid Models

The brief literaturein this areaconsistsof resultsfrom the
engineeringcomputerscienceand, in particular computervi-
sioncommunitiesElinsonetal. [4] andCicirello andRegli [5—7]
examinedhow to develop graph-basedlata structuresto cap-
turefeaturerelationshipsndcreateheuristicsimilarity measures
amongartifacts.More recentwork in [8] examinedmanufctur
ing feature-basedimilarity measurement.

Historically GT coding was the way of indexing of parts
and part families [9]. This facilitated processplanning and
cell-basedmanuficturing by imposing a classi cation scheme
(ahuman-assignedlphanumeristring) onindividual machined
parts. While therehave beena numberof efforts to automate
thegeneratiorof GT codeg10-14], nonehave beenfully transi-
tionedto commerciapractice.

2.2 Feature Extraction on Shape Models

Thompsoretal. [15,16] reverseengineerediesigndy gen-
eratingsurfaceandmachiningfeatureinformationof rangedata
collectedfrom machinedparts. Hilaga et al. [17] useMultires-
olutional Reebgraphsto capturethe feature-like information of
themodels.

3 Feature Decomposition

During the last decade hierarchicalsggmentationhas be-
comerecognizedasa powerful tool for designingef cient algo-
rithms. The mostcommonform of suchhierarchicalsegmenta-
tionsis the scale-spacdecompositiorin computervision. Intu-
itively, aninherentpropertyof real-world objectss thatthey only
exist asmeaningfulentitiesover certainrangef scale. Thefact
thatobjectsin theworld appeaiin differentwaysdependingon
thescaleof obsenationhasimportantimplicationsif oneaimsat
describinghem. Speci cally, the needfor multi-scalerepresen-
tation ariseswhendesigningmethodsfor automaticallyanalyz-
ing andderiving informationfrom real-world measurements.

In the context of solid models,the notion of scalecanbe
simpli ed in termsof thelevelsfor the 3D features Thenotionof
afeature in this sensedraws from the computervision literature
ratherthanthe CAD literature. Namely givenanobjectM , we
areinterestedn partitioningM , into k featuregM 4,... M |, with
M\ M;=0,forl i<j kandM = ;M; subjectto
maximizationof somecoherenceameasure,f(M ), de ned on
the 3D elementdormingeachM ;. At a ner scale eachfeature
M; will bedecomposeithto j = 1;:::;k sub-featuressubjectto
the maximizationof somecoherenceneasures.

Therearethreecentralcomponentsn the aforementioned
process:the numberof componentsat eachscaleof decompo-
sition, k; the featurecoherencdunction f(:); andthe number
of scalesof decompositiorprocess, . In mostpatternrecogni-
tion applicationsk is a controlparameterlf modelsM andM ©

Figure 1. lllustration of the angular shortest path between triangular
facest; and t,.

aretopologicallysimilar, the k major componentst every scale
shouldalsobesimilar. Thecoherencdunction f(A ) will assign
an overall metric to the quality of 3D elementgparticipatingin
the constructiorof featureA . Finally, the depthof decomposi-
tion will be controlleddependingon the quality of a featurein
comparisorto all its sub-featuresSpeci cally, assumeA rep-
k represent
its sub-featureatscalei + 1. Thedecompositiorprocesshould
proceedto scalei + 1 with respectto featureA if andonly if
f(A) f(A)+ f(A)+ i+ f(Aj): This simple criteria for
expansionof scale-spacat every featurehasits rootsin infor-
mationtheory It is in fact motivatedby linear form similar to

In theend,a setof theleaf nodesin adecompositiortreewould
correspondo the nal featuresof agivenmodel.

3.1 Decomposition Algorithm

We aregivena 3D modelM in polyhedralrepresentation
(in our experimentswve usedmodelsin VRML format). Before
we can proceedwith the scale-spac&ecompositionof model
M , we mustchoosea suitabledistancefunctionto capturethe
afnity structureof M . One of the best-kneavh metric func-
tions is the shortest-patimetric d(:;:) (geodesicdistance)on
the triangulationof M with respectto pointsfv,;:::;vng; i.e.,
D (u;v) = d(u;V), the shortestpathdistanceon the triangulated
surfacebetweenu andv for all u;v2 M . We have usedsuch
shortespathdistanceunctionin original decomposition.

In this work we useda different distancefunction which
is computedwith respectto triangularfacesof the model M
fty;::;thg. Hereandin therestof thepapem denoteshenumber
of trianglesin themodel. We de ne theangularshortespathbe-
tweentwo triangularfaces; andtj to bethe shortespathonthe
surfaceof the modelwhichis computedn termsof angulardif-
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ferencebetweerfaces.Figurel shavs anangularshortestpath
betweentwo facest; andt,. Specically, lett; t; denotethe
angularshortes'path(ti;tm;tl;:::;tj) betweerfaced; andt;. And
lettm! t 2t t denotetwo adjacentriangularfaces, andt,
ontheangularshortespatht;  t;. Then,thedistancefunction
usedin thiswork is de ned as

D (t:1) = tm! Tza}.x tj\ (tmify):

Intuitively, distanceD (ti;tj) is the maximumanglebetweenad-
jacentfacesontheangularshortespathbetweert; andtj.
h Obspr\e that by construction the matrix D), =
D(t:t) -
D, v;, is an n-dimensionalvector, characterizingthe distance
structureof facet; in modelM . Also notethatdistancemeasure
D is notametricfunction,but it capturegshegeometricstructure
of themodelM .

The problemof decomposingnodelM into its k mostsig-
ni cant featuresM ;;:::;M  is closelyrelatedto k-dimensional
subspaceclustering (k-DSC). In k-DSC, we are given a set
of distancevectorsv,;::;;vn, andthe objective is to nd a k-
dimensionabubspac& thatminimizesthe quantity:

is symmetric, and the i" row (or column) in

r——
a dv;s)%

1in

whered(v;;S ) correspondgo the smallestdistancebetween
v; and ary memberof S . In practice,if S is given, then

thesek vectorswill alsoform abasisfor S . Speci cally, t; will
belongto the featureM ; if the anglebetweenv; andc; is the

facet; thatcorrespondso thevectory; will belongto thefeature
vectorM ; iff theanglebetweenv; andc; vectorsis the smallest
comparedo all otherbasisvectors.

To constructhesubspacé , theoptimalsolutionof k-DSC,
wewill usethetechniquecommonlyknown assingularvaluede-
composition(SVD) clustering[18]. First, obsene thatthe sym-
metricmatrixD 2 R" " hasa SVD-decompositiomf theform

D=USV'; (1)

whereU;V 2 R" " areorthogonamatricesand

S= Diag(S4;S,:::5Sn); (2)

withs; s, s3> 0,5.0,,= 1= sp=0;n° n.Letus
de ne theorderk compressiomatrixD® of D, fork nCas:

D® = UDiag(sy;:::5,; 050V T (3)

Then,
Theorem 1. [Eckart-Young]

iD D®jj,= min jiD Hjjy: 4
i o= min_ i iz (4)

Thatis, matrix DX is the bestapproximationto D amongall
matricesof rankk. In fact,thisresultcanbegeneralizedo mary
othernorms,including Forbeniusnorm:

Corollary 2. ForA2 R" " et

! 1=2

Al = &MY 5)
151
then,

iD D®jijc= min jiD Hjjg: 6
I Je= i U i (6)

Next, assumeS is the range of matrix D® (the sub-
spacespannedby the columnsof matrix D ®), andlet c;, for

1 j k denotethe j" columnof DM, LetS °6 S beary
k-dimensionakubspacef R". For everyt; 2 M letg 2 S ®be
theclosestfacein S °tot,. De ne Q 2 R" "with thei'" column
equalto g;. Clearly rankQ k. UsingCorollary2 we have:

n n
dt;S ()2 = a d(ti;qi)z
i=1 i=1
= jiD Qji2
jiD D®jz

n
= é d(ti;Ci)z
i=1

d(t;S )%

Qo5

i=1
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Figure 2. Results of applying FEATURE-DECOM POSITION(M ; k) to a model using different distance functions D for K = 2. (a) Sample view of the
model. (b) Decomposition using geodesic distance function [1]. (c¢) Decomposition tree using new angular distance function.

Consequently; Algorithm 1 FEATURE-DECOMPOSITION(M ;K)
Proposition 3. . ThesetS = rangg(D®) is the optimal so- 1: ConstructhedistancematrixD 2 R" ".
lution to k-DSCproblem. 2: Computethe SVD decompositionD = USVT, with S=

Algorithm 1 summarize®ne phaseof scale-spaceecom- . .
g P y 3: Compute the order k compression matrix D® =

Algorithm 1 returnsthe partitioningof M by placingeachface UDiag(sy;:: 50,1150V

t; in M into oneof the partitionsM ;, suchthat the angle be- 4: Let ¢; denotethe " columnof D™, for j = 1;:::;k, and
tweenvectort; andbasisvectorc; correspondingo the partition form sub-featureM ; as the union of facest; 2 M with
M ; is minimized.Figure2 shovs two decompositiotireesof the d(t;S ) = d(t;c)).

model- usinggeodesidistanceandusingthe distancebasedn 5: Returnthesetf M ;;::5M 0.

angulameasure.

The bottleneckof Algorithm 1 is the O(n®) SVD decom-
position, for ann n matrix. The polyhedralrepresentation If we consideronly neighboringverticesin the constructionof
of a model providesus with a planargraphof a 2D manifold. the distancematrix D, the numberof non-zeroentriesin D
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Figure 3. Feature extraction process. (a) Decomposition tree is obtained using FEATURE-DECOM POSITION(M ; k) algorithm. (b) Leaf nodes of the
tree correspond to the features. For illustration purposes only a subset of extracted features is shown.

would be at most3n (dueto planarity of the graph). Comput-
ing SVD decompositiorfor sparsematricesis muchfasterand
takesO(mn) + O(mM(n)) [19]. Wherem is the maximumnum-
berof matrix-vectorcomputationgequiredandM(n) is the cost
of matrix-vectorcomputation®f theform D x. SinceM is aplan-
nermapandD is asparsamatrix,M(n) = O(n) andm= O(n).

3.2 Controlling Decomposition Process

Thedecompositioprocessaspresentedn Section3.1does
not allow for an explicit mechanisnto stopthe inde nite break
up of afeature.Clearly, we could usea prescribedralueto con-
trol the decompositiordepth of the featuretrees,i.e., decom-
positionprocesswill be stoppedwhena root branchin feature
decompositiorireereaches givendepth.In this sectionwe will
give overview of a mechanisnthatwill control the featurede-
composition.Intuitively, the useof this control mechanisnwill
terminatethe decompositiorproces®nly whenall coherenfea-
turesareextracted.

LetM betheoriginal models faceset. Assumein thede-
compositiorprocessafeatureM ; in M canbedecomposeihto
sub-feature$! , andM 5 (e.g.,withoutlossof generalityassume
we arebisectingfeatureM ,). We saythatdecompositiorof the
featureM , into sub-featuresV , and M ; is signi cant if the
angulardistancebetweencomponentof M , andM ; is large.
Formally, this conditioncould be expressedsfollows:

8,2M, ;2M5 9! {24 st

tm2M, * 2Mg M\ (tmity) = D(t3t));

i.e. if the angularshortestpathbetweert; 2 M, andt; 2 M 4
containgwo facedny, andt, (from M , andM , respectiely) with
large angulardistance thenwe shoulddecomposév ; into M ,,
andM 5. Intuitively, if M ; is smoothwe do not wantto bisect
it ary further On the otherhand,if discrepang betweenthe
neighboringtrianglein M , is signi cant, we shouldbisectM ;
it.

4 Experimental Results

We have performedfeatureextractionon a numberof CAD
modelsin polyhedralrepresentation.Thesemodelswere con-
vertedfrom ACIS format, which is exactrepresentatiofiormat.
As aresult,all of themodelshave nice structure(i.e. no missing
faces).

In our experimentswe would like to examine the quali-
tiesfeaturesxtractedusingFEATURE-DECOMPOSITION(M ;K)
algorithm. To theseends, we recursvely apply FEATURE-
DecomPOSITION(M ;k) to eachmodelfor k= 2. Oncea de-
compositiontree is obtained,we considerthe last layer of the
decompositiortree (leaf nodes)asa setof features. Note, that
theunionof thefeaturegleaf nodes)s equivalentto the surface
of the entire model (seeFigure 3 for the illustration of feature
extractionprocess).

Figure4 shows extractedfeaturesfor several models. Ob-
sene that eachfeaturecorrespondgo a relatively smoothsur
faceonthemodel. If thereis a signi cant angulardifferenceon
the surface thenit getsdecomposeéhto separatdeatures.Any
closedsmoothsurfaces(i.e. hole) aredecomposethto two (i.e.
hole)or more(i.e. surfaceis concae) features.
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Figure 4. Extracted Features. Only subset of the features are shown in order to illustrate what kind of features are extracted. (a) Part 9, (b) Part 10, (c)
Simple Boeing, (d) Cimplex.
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Figure 5. Scanned Data. (a) Socket model. Features for fully-scanned model are on the left, and for partially-scanned on the right. Features are grouped
based on correspondence between full and partial models. (b) Bracket model. Features for fully-scanned model are on the left, and for partially-scanned

on the right. Features are grouped based on correspondence between full and partial models. (c) Additional features for fully-scanned models that are not
present in partial scans.

7 Copyright ¢ 2004by ASME



(@) (b)
Figure 6. Scanned Data. (a) Ex model. Features for fully-scanned model are on the left, and for partially-scanned on the right. Features are grouped

based on correspondence between full and partial models. (b) Features for the models converted from exact representation format (ACIS). Note, that
features correspond to the features extracted from scanned models.
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4.1 Noisy Data — Scanned Models

We have establishedhatthefeatureextractionprocedureal-
lowsusto obtainrelevantsubset®f amodelthatre ect complex-
ity of its 3D structure.Our next experimentwasaimedto assess
whetherthe techniqueis capableof handlingmodelsthat were
obtainedusinga 3D digitizer— full 3D view andpartial 3D view
of 3D objects. Suchdatais known to be very noisy, oftenwith
brokenconnectvity andmissingfaces.deally, we wouldlike to
be ableto take a singlescanof a 3D CAD model,decomposé
into features,and selectmodelsfrom the databasehat contain
thesamefeaturearrangementdiVe usedthreeCAD partsto cre-
atesix 3D models-full andpartial(onescan)or eachCAD part.
Oncethe point cloudswereobtainedwe facetedhem,andthen
extractedfeaturesusing FEATURE-DECOMPOSITION(M ;K) al-
gorithm.

Figures5 (a), (b) and 6 (a) shov correspondencef ex-
tracted featuresfor fully and partially scannedmodels. Fig-
ure 5 (c) shavs someadditional featuresextractedfrom fully
scannednodelsthatarenot presentn the partially scannedb-
jects. Extractedfeaturesfrom modelsthatwereoriginally in ex-
actrepresentatioarepresentedn Figure6 (b).

Theperformancef thetechniquds certainlynotasremark-
ableason previous dataset. Although, we believe that the ex-
tractedfeaturesare meaningfulandre ect the structureof the
models.In addition,it is clearthattherearesimilaritiesbetween
featuredecompositionf fully and partially scannedmodels,
and3D CAD modelsfrom our database.

5 Discussion and Conclusions

We have introduceda computationallyef cient approacho
automatiadecompositiorof 3D modelsin polyhedrakepresenta-
tion into featureghatcouldbe usedto assessimilarity between
3D models. The decompositions basedon local surfacestruc-
ture of amodel,asaresultsimilar featurescould be extractedin
thepresencef partialmodelinformation(i.e. partial 3D view of
themodel). Suchlocality representatiocanpotentiallybe used
for 3D matchingpurposes Further Scale-Spacdecomposition
techniqueis robust with respectto noise,thereforeit could be
usedon modelsthat are constructedusing devices suchas 3D
laserscanners.

The notion of featurepresentedereis highly tunedto the
efcient identi cation of shapeandtopologicalcateyories.Even
though,featuresobtainedusingour approactcould be different
from traditional CAD featuresthey could be usedto establish
partialsimilaritiesbetweenCAD modelsin polyhedralrepresen-
tation.

Ourwork is in its preliminarystagesandwe planto extend
its scopeby introducingan ef cient matchingalgorithmto as-
sesgartialsimilarity measuresFromthe above experimentsve
concludethatin orderto performsuccessfumatching thetech-
niguemusthave thefollowing properties:1) betolerantto noise

Figure 7. Results of matching between two SWIVELS, with matched
regions having similar colors. Features trees are obtained for each model
using FEATURE-DECOMPOSITION(M ;K) with geodesic distance
function.

thatscannedlataintroduce;2) beableto performmary-to-mary
matchingsinceit is possiblehatafeaturecouldgetdividedin to
severalfeatures3) beef cient, soit couldbeusedn theNational
DesignRepositorydatabasé. Oneof the main aspectf such
matchingtechniquewould be the distancefunction that assigns
a numericalvalueto a pair of features. Our previouswork [1]
successfullyusedsuchfunction. Thatfunctionis basedon area
andEuclediardistanceneasurementsithin features Pleasesee
Figure7 for a sampleview of two modelswith matchedegions.

Theotherpossibledirectionsfor our futurework: 1) explore
techniquedo extractfeatureghatresembldraditional CAD fea-
tures;and?2) exploit the possibilityof usingScale-Spacteatures
assignaturesor indexing purposes.
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