Long Term Knowledge Retention: Standards & Representation
NIST March 15, 2006

Archiving Manufacturing Knowledge

Dr. Frank Brown
University of Kansas
The Bagdad Artifact
200 BC
What is it?

- "It's a pity we have not found any wires."
- "It means our interpretation could be completely wrong."
Metadata could Preserve Artifact Design

- This protrusion is the Annode
- This protrusion is the Cathode
- Here is a wire attachment protrusion
- ...

Knowledge-based Archiving of Manufacturing Part Shape

• Conducted by NNSA and NARA in 2003
• Goal:
 – Archive a manufacturing part shape, with authenticating features, in the NARA Electronic Records Archives (ERA) prototype.
 – Retrieve the archived part shape from the NARA ERA prototype and authenticate.
Approach

• Start with ISO 10303 STEP AP-203 and transform into knowledge form.

• Deduce authenticating aspects of part shape (features) by reasoning over the part geometry and topology.

• Represent the part shape in the W3C Ontologic Web Language (OWL) format for archiving.

• Archive the OWL part, with its authenticating features, in the NARA ERA research prototype.

• Retrieve the OWL part from the ERA and authenticate it by again deducing its shape features and comparing them to the shape features previously archived.
Scope of our Work

- **AIRIT**
 - design/development of knowledge logics and axioms
 - design/development of inference systems
 - design/development of translation systems among
 - (STEP/ Logics used for inference / DL / OWL)

- **KCP-NNSA**
 - domain knowledge about part features
 - Noel Christiansen made first cut of axioms
 - operational aspects of overall experiment of transmitting/archiving data
 - transmittal to and from NARA ERA prototype
Design Geometry Inferencing

• Representation of a Part:
 – Step ISO 10303 AP-203 Topology and Geometry
 • vertices, edges, loops, faces, points, curves, surfaces

• Representation of Knowledge about Parts
 – axioms describing different kinds of part features
 • bosses, open pockets, cutouts, through holes, face chains

• Automatic Deduction System to infer Knowledge

• Meta System to easily implement Automatic Deduction Systems
 – Logistica
Axiom for Bosses

• (boss ?id :protrusion-entrance ?protrusion-entrance
 • :sides ?sides
 • :top ?top)
• if
• (protrusion-entrance ?protrusion-entrance
 • :border-faces entrance-sides)
• (external-face ?top
 • :border-faces top-sides)
• (maximal-face-chain ?sides
 • :faces boss-sides
 • :convexity-of-left-edge 'concave
 • :is-loop '#t)
• (and (floor-planar ?top)
• (are-equal entrance-sides boss-sides)
• (are-equal top-sides boss-sides)
• (are-vertical boss-sides)))
Maximal Face Chain Idea

- (maximal-face-chain ?sides
 :faces boss-sides
 :convexity-of-left-edge 'concave
 :is-loop '#t)
- iff
 - (face-chain ?sides
 :faces boss-sides
 :convexity-of-left-edge 'concave
 :is-loop '#t)
 - (not (exists (?sides2 boss-sides2)
 (and (face-chain ?sides2
 :faces boss-sides2
 :convexity-of-left-edge 'concave
 :is-loop '#t)
 (sub-chain boss-sides boss-sides2))))
Need for FOL and SOL

• Maximal Face Chains are defined in terms of knowing what is not a face chain.
 – this is not a Horn clause so FOL is needed.

• Face Chains are a recursive definition
 – We need to derive the proper mathematical induction law over this recursive structure, so SOL is needed.
Some Deduced Features

• tuples specifying the number of features of each concept
 - ($cutout 2)
 ($thru-round-hole-0 4)
 ($closed-pocket 0)
 ($blind-round-hole-0 0)
 ($rectangular-cutout 0)
 ($closed-rectangular-pocket 0)
 ($boss 4)
 ($rectangular-boss 4)
 ($open-pocket 2)

• tuples specifying the what are the different features
How many bosses are in the picture?
How many bosses are in the picture?

• Actually zero.
• because the axiom says that a boss consists of a surface with a maximal face circular face chain of 4 connected rectangular faces.
• but each boss in the picture is at the edge of the part making that face be part of the side of the part's base.
How do we fix this?

- General Nonmonotonic Actions (with appropriate frame laws) are used to modify the part by so as to result in better overall descriptions of the part.
Requirements for Knowledge Inferencing on Machined Parts

- Simple Sentences (STEP)
- Horn Clauses (Many simpler axioms)
- FOL (Total Number of Faces)
- SOL (Maximal Face Chains)
- Nonmonotonic Actions (mutilations)
- Frame Laws (mutilations)
Automatic Translation

• standards and other languages
 – STEP, DL, OWL, Logic(FOL facts, FOL axioms)
 – Logistica(SOL, Actions+FrameLaws)
• Automatic Translation systems
 – Step <---> Logic
 – Logic <---> DL
 – DL <---> OWL
• System for easily implementing translation systems: Logistica
Same Meaning - Many Formats

ISO 10303 STEP

Logistica

OWL

#190=CYLINDRICAL_SURFACE
#191=EDGE
#192=EDGE
#194=EDGE
#195=EDGE
#196=EDGE_LOOP(#191,#192,#194,#195)
#197=FACE_OUTER_BOUND(#196,.F.)
#198=ADVANCED_FACE(#197,#190,.F.)

(Face Face-3
:area 112.916
:convexity Smooth
:surface Plane-0
:loops (unordered
 (Loop (Edge-18)
 (Loop (Edge-16)))))

<owl:class rdf:ID="face">
 <owl:equivalentClass>
 <owl:unionOf rdf:parseType="Collection">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:hasValue rdf:resource="convexity"/>
 <owl:hasValue rdf:resource="smooth"/>
 </owl:intersectionOf>
 <owl:restriction>
 <owl:onProperty rdf:resource="name"/>
 <owl:hasValue rdf:resource="face-8"/>
 </owl:restriction>
 <owl:restriction>
 <owl:onProperty rdf:resource="convexity"/>
 <owl:hasValue rdf:resource="smooth"/>
 </owl:restriction>
 </owl:unionOf>
 </owl:equivalentClass>
</owl:class>

Data Format Reasoner Format Knowledge Format

COMMON SEMANTICS
Requirements for Knowledge Transmission of Machined Parts

- **DL**
 - OWL (existing at time of our project)

- **FOL Horn Clauses**
 - some current web work

- **FOL**
 - KIF ?

- **SOL** (restrictions on quantifier seq.?)
 - SKIF ?

- Actions with simple results

- Nonmonotonic systems of Frame Laws
Logistica

• A Meta-programming System

• Allows efficient deduction and translation processes to be quickly specified and refined

• Synergistic Features
Logistica Software Productivity on this project

• design and development time
 – 3 month project
 – about 6 man months
 – proved to NNSA that the approach led to rapid results

• quality of result
 – Low polynomial bounded deduction algorithms.
 – Deduce only what is needed (not everything)
 – Systematically avoid re-deducing things
 – proved to NNSA that the Deduction System worked in practical time
Dr. Frank M. Brown

- **email:** brown@ku.edu
- **telephone:** (785) 864-7376