
Capturing Informal Communication for Use in Software Maintenance

Vera Zaychik William C. Regli
Department of Computer Science

Drexel University
3201 Chestnut Street

Philadelphia, PA 19104, USA

Abstract

Email is an important source of information about the
software development process, project history and design
rationale. Extracting correlations between email conver-
sations and design changes can be difficult without some
knowledge of the context in which the conversations oc-
curred. These correlations can be valuable for use in code
maintenance and reverse engineering.

This paper presents an approach to aid software main-
tenance and improve project communications among soft-
ware engineers. We have developed an environment called
CodeLink for semi-automated creation of structured email
archives. CodeLink is a software design rationale support
tool that integrate email-based collaboration with the soft-
ware development process. In this way, it provides teams of
developers a means to automatically associate specific pro-
grammatic features, functions or code elements with email
messages.

We believe that by integrating collaborative work tools
with development tools we can enrich the communication
within engineering teams and build repositories that detail
collaborative decisions made in the development process.
These repositories can then be used to improve software
maintenance and extract design rationale.

1 Introduction

Project knowledge is contained within source code, re-
quirements and design documents, bug databases, commu-
nications between developers, and the memories of individ-
ual developers. Project communication and collaborative
exchanges contain a great deal of knowledge about design
intent, but it is very difficult to extract what is useful effec-
tively mainly because this medium is so poorly structured
and often not captured.

Electronic means of communication between software
engineers have become widely used but they still lack sup-

port for certain important factors of software development
process. For example, in open-source projects, where par-
ticipation is open to the whole software engineering com-
munity and is not restricted to any geographic area, email is
the principle form of developer communication. In recent
years a trend to use electronic means of communication in
place of face-to-face meetings is becoming evident even in
projects where a walk across the hall would do the trick.
The asynchronous nature of email has increased its utility
in these domains: a request for information does not have
to be satisfied immediately by the recipient but it is placed
at sender’s convenience. There is also less intrusion of per-
sonal space and less interruptions.

Email tools have become very sophisticated and are now
considered a mission-critical part of any software devel-
opment enterprise. However, email tools alone lack an
adequate solution for key aspects of collaborative work
process—specifically, email is domain neutral and does not
capture context. Context is a sum of information we read-
ily obtain from the participants by paying attention to sur-
roundings and nonverbal cues: the exact subject of conver-
sation, turn taking, etc. It is the collection of circumstances
or conditions in which the communication act occurs. When
we want to specify something, we can often point. Such
facilities are not available in email. When a need arises
to specify a point in a referenced document, the sender is
forced to describe the location (third paragraph, second line
or class Foo, function Bar, line 154).

All this informal communication contains a great deal
of project-related information, often not found anywhere
else [27]. The more developers rely on electronic commu-
nications, more data can be available from the communica-
tions to be used in the future. But the availability of data
does not signify its attainability. Email archives of mailing
lists and email discussions are often maintained by the or-
ganizations. Those archives provide insufficient search ca-
pabilities: the information might be there, but most people
are not willing to sift through hundreds of messages for the
relevant few. This is a classical example of intellectual cap-

1

ital that is being generated as part of the work process and
being properly preserved.

The goal of this paper is to describe a methodology to
enable context-aware email communications among collab-
orating software developers. Additionally, we introduce
CodeLink, an integrated email system for capture of engi-
neering communications and context developed based on
this approach. We solve the problem of missing context in
communication by allowing software engineers to include
links to specific places in the document and automatically
extracting context from their development environments.
This, in turn, allows us to preserve information and analyze
ensuing communications. The information archived in this
manner can be used to simplify software maintenance by in-
troducing a new history resource to programmers new to the
project. In doing so, we aim to study two major questions:

� Can we extract useful project information from email
communications between designers using minimal in-
terference?

� Can we improve the communication between the de-
velopers by integrating collaborative work tools, like
email, to software development environments?

CodeLink enables inclusion of references/links to spe-
cific parts of source code into an email message. At the
time of such linking, source code is analyzed to extract se-
mantic information (e.g. what function is the developer re-
ferring to?) and a snapshot is taken to be archived in a dedi-
cated Concurrent Versions System (CVS)[12] archive. The
semantics of developer context are encoded using a DAML
ontology. All email messages containing code links inserted
in above-described manner are archived in a database and
indexed using semantic information extracted. These com-
munications can be annotated, linked to any URL and arbi-
trarily grouped.

This paper is organized as follows: Section 2 provides an
overview of related work, Section 3 describes CodeLink in
detail, while Section 4 describes a user study we conducted.
Section 5 concludes this paper by outlining limitations of
the current approach as well as future research directions.

2 Related Research

Recent research in computer supported cooperative work
(CSCW), Context Awareness, and Design Rationale are all
relevant to this project.

2.1 CSCW and Context Awareness

Email has become the primary message tool used by
97% of North American knowledge workers on a regular

basis. It outpaced other media as the preferred way to re-
ceive or give input during work (66% vs 13% for face-
to-face meetings and 12% for phone) [13]. Mailing lists
are widely used to coordinate open-source projects[11], but
email has also become not uncommon when communicat-
ing with someone in the next office or even in the same
office[16, 8]. At the same time, it still presents many prob-
lems when used for certain tasks as it is not adapted for
handling process and social context[25], workflow and ne-
gotiation. For a comprehensive review of studies of asyn-
chronous communication see [21]. The advantages and de-
ficiencies of using email specifically in Software Design are
described in [24].

One aspect of communication still not well supported by
asynchronous tools is context awareness. In face-to-face
interactions, a great deal of information is expressed by us-
ing cues, which help in grounding between participants[9].
These cues are usually termed context. Context availability
can improve the search capabilities by enabling more pre-
cise queries, which can result in enhanced recall and pre-
cision of results. Thus it is important to obtain context of
email communications at the time of their creation. Then
search of archived messages can be made based not only on
text parsing, but also on context.

Most context-aware applications have been developed
in the domain of mobile and wearable computing, and
in domain-independent groupware. There are some ex-
ceptions. For example, Anchored Conversations[7], an
application-independent tool for collaborative authoring,
provides a chat utility with anchors which act as substi-
tutes for deixis. However, the notion of context is used
very narrowly, only enough information is extracted about
the environment to allow anchors to be placed unambigu-
ously due to the domain-independent nature of the tool.
While CodeLink is a domain-specific tool, in other respects
Anchored Conversations is most closely related to this re-
search.

Usually new tools have to be introduced to the users in-
stead of the well-known common ones. This results in dis-
ruption of the design process and possibly in rejection of the
tool. To deal with this problem, Grudin[15] suggests build-
ing on existing and accepted tools where possible. A custom
email client that demonstrates a particular functionality is
likely to not include most other features of Microsoft Out-
look or Netscape Communicator. Another common prob-
lem is that for such tools to be successful they have to be
adopted by all members of the group[15]. This is commonly
referred to as Critical Mass or Prisoner’s Dillemma. In this
research we added functionality to a commonly used email
system to increase the chances of adoption.

2

2.2 Design Rationale

Over the past several years software projects have be-
come increasingly decentralized – we live in the age of
global economy. Software projects grow too large to be
handled locally, outsourcing development activities to re-
mote locations. Combined with the high turn-over rates, the
problem of coordination is becoming more and more com-
plex. One aspect of coordination is how to preserve and
communicate the how and why of the development, infor-
mation very valuable for maintenance and evolution of the
software. The term most widely used in the research litera-
ture to describe these concepts is Design Rationale (DR).

Documenting DR during the design process has been
shown to be a vital approach to improved correctness and
speed in both Engineering[3] and Software[2] domains. In
the areas with use of mostly ad-hoc tools, such as open-
source projects, the need is felt most strongly: although
the mailing lists of communications between developers are
archived and available online, the lack of structure creates
a barrier to effective retrieval and management, and thus an
entry barrier for new developers to join[11].

Although most DR systems to-date are either generic or
tailored to solve engineering or architectural design prob-
lems, several systems have been developed specifically for
Software Engineering. Comet[20], a commitment-based
system for sensor-based tracker software, uses explicit rep-
resentation and reasoning with commitments to aid the soft-
ware development, especially when considering reuse or
change of a certain module. Comet analyzes the source
code to get commitments, structure and behavior specifi-
cations of modules, to perform impact analysis. Develop-
ers can also explicitly state commitments. COMANCHE
(COoperative MAintenance Network Centered Hypertex-
tual Environment)[5], a multi-user language-independent
environment for cooperative maintenance, allows different
programmers to concurrently access and manipulate infor-
mation related to maintenance requests, the design and im-
plementation decisions made, and their motivations. It al-
lows programmers to annotate any form of textual docu-
ments to provide Rationale in the Small, that is rationale
concerned with implementation activities (as opposed to
Rationale in the Large, concerned with design activities).
The PPIS (Process and Product Information System)[22],
an information and browsing system for software design
and evolution, provides a general purpose hypertext envi-
ronment. Designers place and move objects and can attach
links and annotations to them.

Since design rationale research originally started with ar-
gumentation approach, most systems to-date rely on user
intervention to gather information. This approach has met
with limited success because it demands substantial de-
signer time to enter information[6] or alters the design

process[10]. Designers are reluctant to document their ac-
tions during the detailed design process[14], and there are
significant difficulties in getting them to use argumenta-
tion schemas to structure their thinking during real design
tasks[4]. Due to this, several automatic design rationale
capture systems have been developed in the last 10 years.

There are two general approaches to automatic design ra-
tionale capture. The first approach is to create a system spe-
cialized for a certain domain with well-defined semantics
and/or put certain constraints on the design process. An-
other general approach to automatic design rationale cap-
ture is based on the communications perspective. This per-
spective states that design discourse, i.e. naturally occurring
communication among the group members in the process
of design, contains the design rationale and it can be cap-
tured without user intervention by recording the thoughts
rather than shaping them. A study of a design team in-
volved in conceptual mechanical design by Yen at al[27]
showed that formal reports accounted for only 5% of the to-
tal noun phrases, while hypermail archive (email) contained
43%. Noun phrase metric for engineering design has been
introduced by Mabogunje[19] to access the design process
and predict design team performance. A strong correla-
tion was found between the success of a product as mea-
sured by expert evaluation and the number of distinct noun
phrases found in documentation. The general disadvantage
of automatic capture method is that recorded information
lacks structure and is difficult to retrieve in a systematic and
meaningful manner.

Most communication-based systems allow import of
multimedia data and hyperlinks between the artifact and
other data. The result is a web of information with links
to requirements, deliberations, simulation and analysis re-
sults, etc. This is an electronic equivalent of a design note-
book. The HOS system[17] provides an environment for
computer network design with facilities to import email and
news files. The structured rationale is supported through in-
cremental formalization by using simple text analysis and
domain knowledge. HOS makes suggestions for formal-
ization to the user for possible addition of links within the
acquired information. Notice: the burden of importing rele-
vant information into the system stays with the designer, but
once the information is inserted, it can be linked to other ob-
jects.

When the communication information captured is not
structured in a formal way, but is rather a web of hyper-
linked objects, then it is not a Design Rationale environ-
ment in a strict sense of the definition. Instead, it is a Design
History environment. The difference is that in a design his-
tory software, explanations and answers to specific queries
are not provided. Rather, the user has to look through the
supporting documentation to find out the answers. The en-
vironment merely provides a convenient way to attach and

3

later locate the relevant information. OzWeb[18], a hyper-
code environment for software development, uses WWW
technology (HTTP and HTML) to provide access to source
code and supporting documentation and allows incremental
addition of links as useful connections are discovered.

The main disadvantage of systems that require user im-
porting the data is that the effort required is too great with
no clear short term value. The users have to perceive a
clear benefit to using the system or the effort required has to
be minimal[15]. We counter this problem by automatically
capturing the email exchanges between the developers and
providing the ability to include deictic references.

3 CodeLink Architecture and Implementa-
tion

Our technical approach, and the CodeLink system, is
based on the following observations:

1. Designers and software developers resent interruptions
and resist process changes. Due to this manual design
rationale capture methods have been generally unsuc-
cessful in the industry. The goal is to capture process
knowledge with minimum overhead and the least in-
terference.

2. Automatic capture methods have made some headway,
but encountered the problem of lack of structure. Infor-
mal communications such as email exchanges are easy
to capture, but difficult to retrieve efficiently. At the
same time, we still want to capture informal commu-
nication as it proved to contain a great deal of process
and product information.

3. Email applications are generic domain-independent
tools. While this fact has lead to wide acceptance of
email in the workplace, it also caused loss of con-
text information in communication. Users find work-
arounds for this problem, but missing context can re-
sult in vagueness and misunderstanding. To insert con-
text information manually some effort is required.

The goal is to (as much as possible) automatically and
unobtrusively extract the software development context that
should be associated with email-based project collabora-
tion. CodeLink uses these emails, along with code snap-
shots, to build a repository which can be searched in a vari-
ety of ways to improve the software development, manage-
ment and maintenance process.

3.1 Approach

To access context information within the development
environment we couple the email client with the software

Client Side

Server Side

Communication Repository

 (PostgreSQL)

Source Code

 Editor

Email Client

 (VM)

Context Extraction Module

 (CodeLink)

User Interface Component

Email Server

Archival Module

CVS Repository

Access Control

 Module WWW Access

 Module

Navigation

Annotation/

Structuring

DR Component

Figure 1. CodeLink Software Architecture.

development environment. When a developer points to or
is editing a certain piece of code, what information is rel-
evant and important to the current communication? In our
approach, there are several important pieces of information
that are available for extraction. Not all of them are nec-
essary for immediate goal of pointing out a piece of code
to recipients of communication, but they become important
for structuring and indexing accumulated communication
data. Although Codelink only implements context extrac-
tion from code, one can envision harvesting other types of
software engineering objects, such as bug reports, design
documents, etc. It is only a matter of defining the schema
for such objects and then implementing the functionality in
the application, while the general approach is the same as
discussed here.

A message context,
�

, for an exchange between software
engineers, is defined as a tuple

���������
	�����
:
�

is the
project information about which the subjects are commu-
nicating,

	
is the task in which the author of the message

is engaged at and shortly before the exchange, and
�

is the
personal environment of the author of the exchange. In turn,�

can be defined on different levels of abstraction. In the
case of Java-based systems:

1. On the topmost level,
�

consists of project name and
location. This can also include package name if avail-
able.

2. When the project is in the development stage (as
opposed to design), the additional level is specific
file/files information: file name and version.

3. In object-oriented programming the software is broken
up in logical functional units called classes. In such
case class name is part of the project information.

4. Function name. Functions are groups of statements

4

performing a particular functionality.

5. Line number. The exchange can be on the level of a
particular programming statement.

Of the above listed levels of abstraction of project infor-
mation, the following constitute context in current imple-
mentation: file name, line number, enclosing function, en-
closing class, enclosing package, CVS repository contain-
ing the file (project name), and CVS root (project location),
i.e. the central location of the repository that is accessed by
all developers. Version number is currently not extracted. If
CVS version control is not used for the project, the name of
the directory containing the file is assumed to be the name
of the project.

While the examples provided here are based on Java, any
programming language can be mapped to this schema. Ad-
ditionally, function, class and package names can take on
’not applicable’ value. This is due to the fact that the line
pointed out by the developer does not have to be part of any
function, class or package. This is the case, for example, if
the selected line is the import statement at the beginning of
the file. In the same way, C++ code does not have a notion
of packages and that value is always ’not applicable’. Fig-
ure 4 provides the list of languages and context-based cues
supported in the current version CodeLink.

Our current implementation of context is limited in that	
and

�
of the context

�
definition are currently not ex-

tracted, i.e. CodeLink does not know project management
and workflow information such as the task the user is con-
centrating on, his/her actions right before the exchange,
other source files being modified. One could inquire as to
the connection between the exchange and the recipients of
the message. The email might be addressed to another em-
ployee on the same hierarchy level or to someone higher, a
manager perhaps. This might have significance to the ex-
change and for later retrieval, but it is not easily extracted
and even more difficult to analyze. Additionally, a piece of
information that would be very useful but not easily avail-
able is the intent of exchange: is the message request for
information, a reply, or perhaps a notification of change.
This information can be somewhat reliably extracted using
speech act theory or by requiring the author of the message
to specify this explicitly. While not part of our present im-
plementation, Extraction of these aspects of context can be
accomplished by integration of CodeLink with project man-
agement and workflow systems.

3.2 Software Architecture

The software architecture consists of several server and
user modules, as shown in Figure 1.

� On the user side, a context extractor and mime han-
dler are responsible for enabling sending and receiving

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns="http://edge.mcs.drexel.edu/uvzaychi/DAML/message-ontology#">

<MessageContext rdf:ID="Fri_Aug_17_18:45:42_2001">��� � �����
	������� ��� � �
</lineNumber>��� � � ��������������� � ��������������� � � ��������� � � � �����������

<functionName>public boolean parseFile(String filename)</functionName>

<className>FileManager</className>

<cvsRoot>/projs1/cvsroot</cvsRoot>

<cvsRootReal>face.mcs.drexel.edu:2345</cvsRootReal>

<cvsRepository>CUP/working</cvsRepository>

<version>1.1</version>

</MessageContext>

</rdf:RDF>

 �!#"�$�%�& ' ()%�*�*�& +�,�-."�,�/ 0�+�1�' & +�2 354 / ' -�6.7 ' & +�-�,�8+�9
{

 ...

 try {

 ...

 } catch (SAXParseException err) {

111
35:�0 4 +�8<; *�$ 4 ; "�/ ' - 4 & -)2 =

** > ,�/ 0�' -�6.+�/ / *�/ =
 + ", line " + err

; 6�+�4 ?�' -�+�@A$�8<%�+�/�2 9
 + ", uri " + err.getSystemId ());

 ...

 }

 ...

127 }

Figure 2. An example of context extraction
during the link inclusion process.

messages with references.

� A web browser allows access to the online brows-
ing/search interface to the communication database,
and to the history of source files annotated with rel-
evant messages.

� On the server side, several services enable archival of
messages sent, storage of file snapshots and the inter-
face to the database. All server-side components ex-
cept for web interface are implemented by creating a
separate Unix user. This user runs all services and is
the owner of the CVS and Postgres databases.

The context extractor, when invoked by the user, an-
alyzes the source code and extracts relevant information.
This information is encoded using DAML ontology and
inserted into the email as a MIME attachment of type
daml/code-link. At the same time, a snapshot of the
source file is taken and sent to the CVS access control mod-
ule using CVSPUT request. Thus only the link is attached
to the message, files themselves are not. See Figure 2 for
an example of context extraction during the link inclusion
process.

DAML is the DARPA Agent Markup Language, based
on Resource Description Framework (RDF) and Extensible
Markup Language(XML)[1]. It provides a set of constructs
with which to create ontologies and to markup information
so that it is machine readable and was created as part of
the Semantic Web initiative. The main motivation behind

5

this language is to describe information contained in the
Web pages so that computer agents can read and interpret
it. Currently, Hypertext Markup Language (HTML) is used
for these purposes, but it is not well suited for computer in-
terpretation and understanding. XML was developed by the
World Wide Web Consortium (W3C) so that custom tags
can be defined to provide metadata markup. XML is suffi-
cient to describe the syntax of the information, but not the
semantics. RDF, on the other hand, can describe semantics,
but only on a limited level. For example, only range and
domain constraints can be put on the properties, while other
restrictions are needed for rich representation. Additionally,
sometimes properties of properties need to be specified (for
example, to say that a property is unique, transitive, and
so on). RDF does not allow for this. Necessary and suffi-
cient conditions for class membership cannot be specified
using RDF, no equivalence or disjointness of classes. For
all these reasons an extension to RDF using XML syntax
was developed and called DAML. DAML uses a concept
of namespaces to allow reuse of ontology libraries. This
means that when a certain concept is used (class or prop-
erty), the ontology of its origin needs to be specified. This
avoids clashes between different libraries and definitions, as
well as providing for automated inference.

Any number of references/links can be inserted in any
particular email message. Any message containing refer-
ences to code is automatically forwarded to the Archival
Server. The user can also independently cc: any message
he/she feels is important to archive to the server as it has a
dedicated email address.

Mime Handler. Once the recipient receives the mes-
sage, code references can be displayed using a special mime
handler for daml/code-link attachments. This handler
parses the DAML-encoded attachment and sends a CVS-
GET request to the server specified in the reference. It gets
the file back and displays it as an HTML file with a book-
mark to the sender’s selection.

CVS Access Control Service. On the server side, a spe-
cial CVS repository is set up for referenced code files. How-
ever, it is not accessed directly. Rather, a custom access
control service receives CVSGET and CVSPUT requests
and fulfills them. When fulfilling a CVSPUT request, the
method of retrieval and the version number of the file are
returned. The file requested is returned for CVSGET re-
quests. In both cases, if the request is faulty, error is re-
turned to the client. Several client requests can be handled
concurrently. The CVSGET requests are also received from
the Web browsing/search interface.

The archival server receives all the email messages
from the Email server. It parses the messages and the
daml/code-link attachments and saves them off to a
PostgreSQL database (PostgreSQL[23] is an open-source
Object-Relational Database Management System). The

Figure 3. Example of web interface browsing
by project name.

database has a web browsing/search interface. This inter-
face allows browsing by author, date, project name, cvs root
location, package, class and function names. The messages
can also be grouped and browsed by groups. The user can
add comments and links to any message in the database.
While browsing, the user can narrow the query if too many
matches are returned by any of the other browsing criteria.
See Figure 3 for an example of web interface browsing by
project name.

History-annotated code. Another module annotates the
source file with history information taken from the CVS log.
It also inserts links to the messages about the specific lines
of code by interfacing to the message database. This mod-
ule can be very useful since it maps messages back to the
artifact presenting them in the original context while not re-
quiring tight integration or storage in the artifact.

3.3 Implementation

The above described architecture has been implemented
in a prototype called CodeLink currently running in our lab-
oratory. For the prototype of the system we use Emacs as
a source code development environment. Emacs is a very
popular GNU software and is widely used in research com-

6

Field

Function name

Class name

Package name

C++

return_type

name (args) {

return_type

name (args) {

C

return_type

name (args)

[throws

exception] {

Java

sub name

[(args)] {

Perl

class name { class name

[extends,

implements] {

package name; package name;not applicable

not applicable

not applicable

not applicable

Figure 4. Context equivalents for different lan-
guages

munity. Additionally, it provides a language called ELisp
(Emacs Lisp) using which additional functionalities and
modules can be developed and distributed by any Emacs
user. Over the years Emacs has grown to include version
control interfaces (for example, pcl-cvs is an emacs inter-
face to CVS), inline web browsers (W3), email clients (VM)
and many other extensions. We use VM[26] as an email
client for this project because it runs inside Emacs and is
written entirely in ELisp, which makes it very easy to inter-
face with. VM is an open-source software, that has usual
email client functionality, as well as more advanced com-
mands that complete tasks like bursting and creating di-
gests, message forwarding, organizing message presenta-
tion according to various criteria, and creating rule-based
virtual folders. This also means that the module is system-
independent, i.e. it can run equally well on Windows, Unix
or any other platform as long as Emacs and VM are in-
stalled. Although VM is not the most widely used email
client, it has the same attractive quality of Emacs—ease of
integration and extensions. Other widely used clients, such
as Microsoft Outlook or Netscape Communicator, have lim-
ited or difficult to customize user interfaces. It should be
noted, however, that the general principle behind CodeLink
could be used to implement a context-aware collaboration
environment with these commercial systems. For example,
Microsoft’s Outlook, NetMeeting and VisualStudio could
be integrated with VisualBasic in a similar manner as we
describe here with CodeLink. For prototyping and testing
purposes, however, we chose Emacs.

The context extraction is written in ELisp and uses
mode-specific Emacs functions whenever possible. Cur-
rently, Java, C++, C and Perl are supported, however a link
to any type of file can be inserted, in which case function,
class and package information is not extracted. Table 4
demonstrates the mapping of context concepts for different
languages. In Perl sub is mapped onto function name, and
class name is always ’not applicable’. When linking to C
source files, both class and package name are always ’not
applicable’. After extracting language specific information
about the selection, we need to find out whether the current
file is a part of some CVS repository. For this, we look for
directory named CVS in the parent directory of the file. If

such a directory is found, the file Root states the location of
CVS root, and the file Repository – the name of the repos-
itory/project. If such information is unavailable, the file is
assumed to not be a part of any CVS repository, and the
name of the parent directory is used instead. It is assumed
that most groups do use some version control system and
CVS is the system of choice for most open-source projects.

It is evident that once the file changes, the link will no
longer be correct. In order to deal with this problem, a copy
of the current state of the file, snapshot of sorts, is saved
and sent to the CVS server. This is achieved by making a
direct connection to the custom access control service with
a CVSPUT request. The service returns the version number
of the snapshot and the exact method to get it in the future
to be included in the link. This way the correct version of
the file is always displayed when using links. The latter
is included in the link so that no one central CVS reposi-
tory is required for all users. As long as the link contains
the method to get to the snapshot, it is not important what
particular repository is used by one user or another. This
implementation is not the only possible one, nor necessar-
ily the best one. Currently, the access control service can
become a bottleneck if a lot of requests are dispatched. In-
stead the files can be inserted as attachments directly to the
email message. We decided against such implementation,
however, to not overburden the email message with possi-
bly many different attachments and also not to confuse the
user.

The information thus extracted is encoded using DAML
ontology, the current version of which is located at the
GICL website1. The encoded information is included as
a MIME attachment of new type daml, sub-type code-link.
When the user execute a ’send’ command on the email mes-
sage with attachments of type daml/code-link, such mes-
sage is automatically Bcc: to the archive. All server-side
services except web interface are run by a special user on
a Unix/Linux platform. This user has an account and an
email address. To this email address all the messages are
forwarded. In current implementation we have such a spe-
cial user set up on a Linux server.

3.4 Scenarios

To illustrate the approach, here are two scenarios of use
of CodeLink.

Scenario 1. A group of software engineers are work-
ing on a new software project. Developer 1 is working on
error correction. Previously, the errors were handled using
one Error class and strings. Developer 1 created several
subclasses to handle different errors more specifically. He
checks the code into the code repository the group is using

1http://edge.mcs.drexel.edu/uvzaychi/DAML/message-
ontology.daml

7

Figure 5. Screenshot of the email message
composed by Developer 1 with links inserted.

for version control and sends an email out to all developers
to let them know they need to update their code to this new
error handling model. The developer wants to provide code
details in his message, refer to specific parts of the imple-
mentation, and provide examples of use of the new model.
Problem: there is no easy way to insert links to specific code
instances.

Scenario 2. Developer 1 is assigned a bug dealing with a
certain functionality being unavailable in one of the modes
of the software. He traces the code and discovers that the
functionality in question is specifically disabled for that
mode, but no reason is given in the comments. He removes
the restriction but the resulting software produces incorrect
results or crashes. It is evident that there was a reason for
the original functionality, but where is this information con-
tained? Problem: all changes to software have reasons be-
hind them, but it is not easy to find such information after
the fact.

In this work we present a systematic approach to deal
with the problems in both of these scenarios. By solving the
first problem we find a solution to the second. In Scenario
1 the problem that the developer is facing is lack of abil-
ity to express context information along with the content.
Scenario 2 describes a more important problem of missing
information. Using our approach and CodeLink, the scenar-
ios can continue as following.

Scenario 1. Developer 1 inserts a link to the old ver-
sion of error handling code and explains why such model
was not sufficient for the project. He does that by simply
invoking a menu option in the email client and pointing to
the buffer containing the code (Figure 5). He then inserts a
link to the new implementation of error correction using the

Figure 6. Screenshot of blame-annotated
code with links to relevant messages.

same method and another link to an example of how errors
should be handled from now on. Other developers on the
team receive the email and are able to click on the links and
see the change in the code. The file in question is opened in
a browser and jumps directly to the selection made by the
originator of the message. They also look at the example to
make sure they understand the new approach. Developer 2
finds an inconsistency between the new code and the exam-
ple and answers the original email pointing to the problem.
She also has a question as to the overall effectiveness on
the new approach. Developer 1 fixes the inconsistency and
also answers the question of Developer 2. Other develop-
ers also have minor feedbacks about the change and answer
the original email. Every one of the above mentioned mes-
sages is forwarded to the archival database for maintenance
purposes.

Scenario 2. Developer 1 retrieves the history of the
source file in question and finds out who wrote the lines and
when. He also discovers that several messages have been
sent about the lines in question at the time of the original
implementation (Figure 6). He reviews the messages and
discovers that the functionality does not apply to this mode
and would not make any sense. One of the messages also
contains a link to the white paper on the subject. He then
removes the changes he made and also inserts the line of
comment explaining the exception. The bug report is closed
with detailed explanations and links to the messages in the
archive.

8

4 User Study

We conducted an informal user study to ascertain the
utility of CodeLink. CodeLink was made available to three
groups of users for a period of several weeks. All three
groups have been working on software projects for a long
time before our software was introduced into their com-
munication process. Users were instructed to only use
CodeLink when the need for it is felt, and not in all project
emails. While the study was not large enough to provide
for statistically significant data analysis, several interesting
observations can be made.

1. Users found no or little problem in inserting or dis-
playing links. They chose to do so quite often. Most
of the email messages with links were meant to point
out specific piece of code that needed work, had a bug,
or that somebody needed help with.

2. CodeLink was extensively used in a guru-novice sce-
nario, where one person knew the product or program-
ming language to a much greater extent than the other.
In such cases, the guru used links to refer to specific
parts of code for explanation, while the novice used
them to ask questions. Email messages composed in
such a scenario were very descriptive and contained
a great deal of information about the software code.
Such messages could be very useful for other novices
on the project in the future.

3. Most user problems were caused by their unfamiliar-
ity with the email client, VM. Only one developer was
a novice Emacs user, and that person sent the least
amount of messages. In short, people better acquainted
with the email client and the development environment
were more likely to compose messages with links.

5 Discussion and Conclusions

This work presents an approach to enhance context-
aware collaboration among software engineers and archive
the communications during the software project lifecycle.
The paper introduces a tool, CodeLink, demonstrating this
approach and provides an informal user study indicating its
utility in several practical software maintenance scenarios.

Our fundamental contribution is in the integration of
software development and collaborative work environ-
ments. While our demonstration domain is only email, we
believe the general approach can be applied to other engi-
neering domains and used for other forms of collaboration
media. We showed that the ability to insert links into email
messages can improve communications among engineers
by reducing time required to specify references to code.
Further, communication archives structured using context

information provide wider range of queries, which leads
to better search results when examining software project
records.

Our work, and CodeLink in particular, does not form a
complete solution. We envision a larger suite of tools, such
as SourceForge, being integrated with multiple collabora-
tion tools and project management and workflow support
systems. The main limitations to our include is that it as-
sumes that developers send a great deal of messages with
code references and that the ratio of such messages to all
the project messages is high. This ratio depends on many
things: how distributed the work process is, what stage it
is in, the roles between the developers and, most signifi-
cantly, the business and management practices of the orga-
nization (i.e., is this kind of exchange required or encour-
aged?). For example, in a mentor-student relationship there
is a high likelihood of request-reply exchanges with code
references in the replies. From our observations in open-
source projects the size of the project and the number of the
developers makes a difference in the ratio of code-related
messages. Older and bigger projects usually draw a great
deal of participants and the ratio becomes smaller. Overall,
only a significant user study across a wide range of organi-
zations could show how much relevant information can be
captured with this approach.

This paper does not consider security and privacy issues,
although such matters can be very important. Developers
can feel apprehensive about their messages being archived
since such record might be used against them in the future
(to show their incompetence, for example). There can also
be a sense of ’big brother watching’. In the current approach
not all messages are archived, but only the ones that are
known to have project-related information due to the links
to code. All other messages are ignored, whether they are
personal or project-related. This results in a trade-off of
getting more sense of security in using the application but
losing project-related messages without links. Additionally,
the security of company-owned information needs to also
be considered. Currently, the message archive (and thus
parts of the code) is available to the entire organization. If
CodeLink is to be used in a corporate environment, some
form of role-based access control would be needed within
the message repository.

Future work on this project can extend in several differ-
ent directions: visualization, user studies, integration with
other communication media, more extended notion of con-
text, and natural language processing combined with dif-
ferent retrieval strategies for explicit extraction of design
rationale.

9

6 Acknowledgements

This work was supported in part by National Science
Foundation (NSF) Graduate Research Fellowship, Knowl-
edge and Distributed Intelligence in the Information Age
(KDI) Initiative Grant CISE/IIS-9873005; and Office of
Naval Research Grant N00014-01-1-0618. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author and do not necessarily
reflect the views of the National Science Foundation or the
other supporting government and corporate organizations.

References

[1] The DARPA agent markup language (DAML).
http://www.daml.org, 2000.

[2] L. Bratthall, E. Johansson, and B. Regnell. Is a design ra-
tionale vital when predicting change impact? - a controlled
experiment on software architecture evolution. In Proceed-
ings of PROFES’00: 2nd International Conference on Prod-
uct Focused Software Process Improvement, Oulu, Finland,
June 20-22 2000.

[3] F. M. T. Brazier, P. H. G. Van Langen, and J. Treur. A com-
positional approach to modelling design rationale. Artificial
Intelligence for Engineering Design, Analysis and Manufac-
turing, 11(2):125–139, April 1997.

[4] S. J. Buckingham-Shum and N. Hammond. Argumentation-
based design rationale: What use at what cost? Human-
Computer Studies, 40(4):603–652, April 1994.

[5] G. Canfora, G. Casazza, and A. D. Lucia. A design ratio-
nale based environment for cooperative maintenance. Inter-
national Journal of Software Engineering and Knowledge
Engineering, 10(5):627–645, October 2000.

[6] J. M. Carroll and T. P. Moran. Special issue on design ra-
tionale. Human-Computer Interaction Journal, 6(3-4):197–
442, 1991.

[7] E. F. Churchill, J. Trevor, S. Bly, L. Nelson, and
D. Cubranic. Anchored conversations: Chatting in the con-
text of a document. In Proceedings of the CHI 2000 Confer-
ence on Human Factors in Computing Systems, pages 454–
461, The Hague, The Netherlands, April 1-6 2000. ACM,
ACM Press.

[8] V. Cicirello, A. Harris, E. Lee, V. Thomas, and V. Zaychik.
A study of teamwork and collaboration in software design.
Human-Computer Interaction Class Project Report, Drexel
University, May 1999.

[9] H. H. Clark and S. E. Brennan. Perspectives on Socially
Shared Cognition, chapter Grounding in communication,
pages 127–149. American Psychological Society, Washing-
ton, D.C., 1991.

[10] J. E. Conklin and K. Burgess Yakemovic. A process-
oriented approach to design rationale. Human-Computer In-
teraction, 6(3-4):357–391, 1991.

[11] D. Cubranic and K. S. Booth. Coordination in open-source
software development. In Proceedings of the 8th IEEE Inter-
national Workshops on Enabling Technologies: Infrastruc-
ture for Collaborative Enterprises, pages 61–66, Palo Alto,
CA, June 16-18 1999. IEEE, IEEE Press.

[12] Concurrent versions system. http://www.cvshome.org.
[13] K. Fadden and S. Battles. Messaging for innovation: Build-

ing the innovation infrastructure through messaging prac-
tices. A Study by Pitney Bowes, August 2000.

[14] G. Fischer, A. C. Lemke, and R. McCall. Making argu-
mentation serve design. Human-Computer Interaction, 6(3-
4):393–419, 1991.

[15] J. Grudin. Groupware and social dynamics: Eight chal-
lenges for developers. Communications of the ACM,
37(1):92–105, January 1994.

[16] J. Hollan and S. Stornetta. Beyond being there. In Pro-
ceedings of ACM Conference on Human Factors in Comput-
ing Systems(CHI’92), pages 119–125, Monterey, CA, May
1992. ACM, ACM Press.

[17] F. M. S. III and R. J. McCall. Integrating different perspec-
tives on design rationale: Supporting the emergence of de-
sign rationale from design communication. Artificial Intelli-
gence for Engineering Design, Analysis and Manufacturing,
11(2):141–154, April 1997.

[18] G. E. Kaiser, S. E. Dossick, W. Jiang, and J. J. Yang. An ar-
chitecture for www-based hypercode environments. In Pro-
ceedings of the 1997 International Conference on Software
Engineering, pages 3–13, Boston, United States, May 17-23
1997. ACM, ACM Press.

[19] A. Mabogunje and L. J. Leifer. Noun phrases as surrogates
for measuring early phases of the mechanical design pro-
cess. In Proceedings of the 9th International Conference
on Design Theory and Methodology (ASME/DETC), Sacra-
mento, CA, 1997. ASME.

[20] W. Mark, S. Tyler, J. McGuire, and J. Schlossberg.
Commitment-based software development. IEEE Transac-
tions on Software Engineering, 18(10):870–886, October
1992.

[21] J. E. McGrath and A. B. Hollingshead. Groups Interacting
with Technology: Ideas, Evidence, Issues, and an Agenda,
volume 194 of Sage Library of Social Research. Sage Pub-
lications, Thousand Oaks, CA, 1994.

[22] S. Monk, I. Sommerville, J. M. Pendaries, and B. Durin.
Supporting design rationale for system evolution. In
W. Schäfer and P. Botella, editors, Proceedings of the
5th European Software Engineering Conference (ESEC’95),
pages 307–323, Sitges, Spain, September 25-28 1995.
Springer-Verlag.

[23] http://www.postgresql.org.
[24] M. Saeki, S. Sureerat, and K. Yoshida. Supporting dis-

tributed individual work in cooperative specification devel-
opment. In S. Bhalla, editor, Lecture Notes in Computer
Science, Proceedings of the 6th International Conference
on Information Systems and Management of Data (CIS-
MOD’95), pages 232–247, Bombay, India, November 15-17
1995. Springer.

[25] K. Sproull. The nature of managerial attention. In L. Sproull
and P. Larkey, editors, Advances in Information Processing
in Organizations, pages 9–27. JAI Press, Greenwich, CT,
1984.

[26] http://www.wonderworks.com/vm.
[27] S. J. Yen, R. Fruchter, and L. Leifer. Facilitating tacit knowl-

edge capture and reuse in conceptual design activities. In

10

ASME Design Engineering Techinical Conferences, 11th In-
ternational Conference on Design Theory and Methodol-
ogy, New York, NY, USA, September 12-16, Las Vegas, NV
1999. ASME, ASME Press. DETC99/DTM-8781.

11

